Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.237
Filtrar
2.
Mol Metab ; 82: 101905, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431218

RESUMO

OBJECTIVE: Kallistatin (KST), also known as SERPIN A4, is a circulating, broadly acting human plasma protein with pleiotropic properties. Clinical studies in humans revealed reduced KST levels in obesity. The exact role of KST in glucose and energy homeostasis in the setting of insulin resistance and type 2 diabetes is currently unknown. METHODS: Kallistatin mRNA expression in human subcutaneous white adipose tissue (sWAT) of 47 people with overweight to obesity of the clinical trial "Comparison of Low Fat and Low Carbohydrate Diets With Respect to Weight Loss and Metabolic Effects (B-SMART)" was measured. Moreover, we studied transgenic mice systemically overexpressing human KST (hKST-TG) and wild type littermate control mice (WT) under normal chow (NCD) and high-fat diet (HFD) conditions. RESULTS: In sWAT of people with overweight to obesity, KST mRNA increased after diet-induced weight loss. On NCD, we did not observe differences between hKST-TG and WT mice. Under HFD conditions, body weight, body fat and liver fat content did not differ between genotypes. Yet, during intraperitoneal glucose tolerance tests (ipGTT) insulin excursions and HOMA-IR were lower in hKST-TG (4.42 ± 0.87 AU, WT vs. 2.20 ± 0.27 AU, hKST-TG, p < 0.05). Hyperinsulinemic euglycemic clamp studies with tracer-labeled glucose infusion confirmed improved insulin sensitivity by higher glucose infusion rates in hKST-TG mice (31.5 ± 1.78 mg/kg/min, hKST-TG vs. 18.1 ± 1.67 mg/kg/min, WT, p < 0.05). Improved insulin sensitivity was driven by reduced hepatic insulin resistance (clamp hepatic glucose output: 7.7 ± 1.9 mg/kg/min, hKST-TG vs 12.2 ± 0.8 mg/kg/min, WT, p < 0.05), providing evidence for direct insulin sensitizing effects of KST for the first time. Insulin sensitivity was differentially affected in skeletal muscle and adipose tissue. Mechanistically, we observed reduced Wnt signaling in the liver but not in skeletal muscle, which may explain the effect. CONCLUSIONS: KST expression increases after weight loss in sWAT from people with obesity. Furthermore, human KST ameliorates diet-induced hepatic insulin resistance in mice, while differentially affecting skeletal muscle and adipose tissue insulin sensitivity. Thus, KST may be an interesting, yet challenging, therapeutic target for patients with obesity and insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Doenças não Transmissíveis , Serpinas , Humanos , Camundongos , Animais , Glucose/metabolismo , Resistência à Insulina/fisiologia , Serpinas/genética , Sobrepeso , Insulina/metabolismo , Obesidade/metabolismo , Camundongos Transgênicos , Dieta Hiperlipídica/efeitos adversos , Homeostase , Redução de Peso , RNA Mensageiro/metabolismo
3.
Int J Biol Macromol ; 265(Pt 1): 130852, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508547

RESUMO

In the intricate realm of animal biology, a multitude of vital processes heavily rely on precisely orchestrated proteinase cascades, but the potential for havoc makes proteinase inhibitors indispensable, with serine proteinase inhibitors (serpins) at the forefront, serving as custodians of homeostasis and participating in various critical biological processes. Importantly, there are still many unexplored facets of serpin functionality. In this study, we focused on the serpin family proteins from Marsupenaeus japonicus, utilizing a fine-tuned pretrained protein language model. This approach led to the identification and evolutionary validation of 28 serpins, one of which, referred to as Mjserpin-1, was both computationally and experimentally demonstrated to show potential as an antiviral and apoptosis inhibitor. Our research unveils exciting prospects for the fusion of state-of-the-art artificial intelligence and rich bioinformatics, holding the promise of significant discoveries that could pave the way for future therapeutic advancements.


Assuntos
Serpinas , Animais , Serpinas/genética , Serpinas/metabolismo , Inibidores de Serino Proteinase/farmacologia , Inteligência Artificial , Peptídeo Hidrolases , Aprendizado de Máquina
4.
Cell Biochem Funct ; 42(2): e3987, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509770

RESUMO

Inteins are proteins involved in the protein splicing mechanism, an autoprocessing event, where sequences (exteins) separated by inteins become ligated each other after recombination. Two kinds of inteins have been described, contiguous inteins and split inteins. The former ones are transcribed and translated as a single peptide along with their exteins, while the latter are fragmented between two different genes and are transcribed and translated separately. The aim of this study is to establish a method to obtain a fluorescent eukaryotic protein to analyze its cellular localization, using the natural split gp41-1 inteins. We chose natural split inteins due to their distribution in all three domains of life. Two constructs were prepared, one containing the N-terminal split intein along with the N-moiety of the Red Fluorescent Protein (RFP) and a second construct containing the C-terminal of split intein, the C-moiety of RFP and the gene coding for Maspin, a tumor suppressor protein. The trans-splicing was verified by transfecting both N-terminal and C-terminal constructs into mammalian cells. The success of the recombination event was highlighted through the fluorescence produced by reconstituted RFP after recombination, along with the overlap of the red fluorescence produced by recombined RFP and the green fluorescence produced by the hybridization of the recombinant Maspin with a specific antibody. In conclusion, we opted to use this mechanism of recombination to obtain a fluorescent Maspin instead to express a large fusion protein, considering that it could interfere with Maspin's structure and function.


Assuntos
Osteossarcoma , Serpinas , Animais , Humanos , Inteínas/genética , Processamento de Proteína , Serpinas/genética , Osteossarcoma/genética , Mamíferos
5.
J Cardiothorac Surg ; 19(1): 141, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504347

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of morality among all malignant tumors. Smoking is one of the most important causes of NSCLC, which contributes not only to the initiation of NSCLC but also to its progression. The identification of specific biomarkers associated with smoking will promote diagnosis and treatment. METHODS: Data mining was used to identify the smoking associated gene SERPINB12. CCK8 assays, colony formation assays, a mouse xenograft model and transwell assays were performed to measure the biological functions of SERPINB12 in NSCLC. GSEA, luciferase reporter assays and immunofluorescence were conducted to explore the potential molecular mechanisms of SERPINB12 in NSCLC. RESULTS: In this study, by data mining the TCGA database, we found that SERPINB12 was greatly upregulated in NSCLC patients with cigarette consumption behavior, while the expression level was positively correlated with disease grade and poor prognosis. SERPINB12 is a kind of serpin peptidase inhibitor, but its function in malignant tumors remains largely unknown. Functionally, knockdown of SERPINB12 observably inhibited the proliferation and metastasis of NSCLC cells in vitro and in vivo. Moreover, downregulation of SERPINB12 attenuated Wnt signaling by inhibiting the nuclear translocation of ß-catenin, which explained the molecular mechanism underlying tumor progression. CONCLUSIONS: In conclusion, SERPINB12 functions as a tumorigenesis factor, which could be a promising biomarker for NSCLC patients with smoking behavior, as well as a therapeutic target.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Serpinas , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Via de Sinalização Wnt/genética , Regulação para Cima , Linhagem Celular Tumoral , Fumar/efeitos adversos , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Serpinas/genética
6.
Invest Ophthalmol Vis Sci ; 65(2): 16, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324301

RESUMO

Serine protease inhibitors A1 (SerpinA1) and A3 (SerpinA3) are important members of the serpin family, playing crucial roles in the regulation of serine proteases and influencing various physiological processes. SerpinA1, also known as α-1-antitrypsin, is a versatile glycoprotein predominantly synthesized in the liver, with additional production in inflammatory and epithelial cell types. It exhibits multifaceted functions, including immune modulation, complement activation regulation, and inhibition of endothelial cell apoptosis. SerpinA3, also known as α-1-antichymotrypsin, is expressed both extracellularly and intracellularly in various tissues, particularly in the retina, kidney, liver, and pancreas. It exerts anti-inflammatory, anti-angiogenic, antioxidant, and antifibrotic activities. Both SerpinA1 and SerpinA3 have been implicated in conditions such as keratitis, diabetic retinopathy, age-related macular degeneration, glaucoma, cataracts, dry eye disease, keratoconus, uveitis, and pterygium. Their role in influencing metalloproteinases and cytokines, as well as endothelial permeability, and their protective effects on Müller cells against oxidative stress further highlight their diverse and critical roles in ocular pathologies. This review provides a comprehensive overview of the etiology and functions of SerpinA1 and SerpinA3 in ocular diseases, emphasizing their multifaceted roles and the complexity of their interactions within the ocular microenvironment.


Assuntos
Oftalmopatias , Serpinas , Antioxidantes , Apoptose , Olho , Fígado , Humanos , Oftalmopatias/genética , Serpinas/genética
7.
Mol Cancer Res ; 22(4): 402-414, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38226993

RESUMO

Bone metastasis (BM) is one of the most common complications of advanced cancer. Immunotherapy for bone metastasis of lung cancer (LCBM) is not so promising and the immune mechanisms are still unknown. Here, we utilized a model of BM by injecting cancer cells through caudal artery (CA) to screen out a highly bone metastatic derivative (LLC1-BM3) from a murine lung cancer cell line LLC1. Mass spectrometry-based proteomics was performed in LLC1-parental and LLC1-BM3 cells. Combining with prognostic survival information from patients with lung cancer, we identified serpin B9 (SB9) as a key factor in BM. Molecular characterization showed that SB9 overexpression was associated with poor prognosis and high bone metastatic burden in lung cancer. Moreover, SB9 could increase the ability of lung cancer cells to metastasize to the bone. The mechanistic studies revealed that tumor-derived SB9 promoted BM through an immune cell-dependent way by inactivating granzyme B, manifesting with the decreased infiltration of cytotoxic T cells and increased expression level of exhausted markers. A specific SB9-targeting inhibitor [1,3-benzoxazole-6-carboxylic acid (BTCA)] significantly suppressed LCBM in the CA mouse model. This study reveals that SB9 may serve as a therapeutic target and potential prognostic marker for patients with LCBM. IMPLICATIONS: SB9 as a therapeutic target for LCBM.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Serpinas , Humanos , Camundongos , Animais , Neoplasias Pulmonares/patologia , Serpinas/genética , Serpinas/metabolismo , Proteômica , Linhagem Celular , Neoplasias Ósseas/genética
8.
Pediatr Dermatol ; 41(2): 369-371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165066

RESUMO

Nagashima-type palmoplantar keratoderma (NPPK) is an autosomal recessive form of diffuse palmoplantar keratoderma (PPK) characterized by thickening and redness of palms and/or soles. In this report, we describe a female patient of Korean descent who had clinical remission of her adult-onset NPPK. To our knowledge, she is the first reported heterozygous SERBINB7 mutation carrier to present with classic NPPK who achieved spontaneous clinical remission.


Assuntos
Ceratodermia Palmar e Plantar , Serpinas , Adulto , Humanos , Feminino , Ceratodermia Palmar e Plantar/diagnóstico , Ceratodermia Palmar e Plantar/genética , Serpinas/genética , Mutação , Povo Asiático/genética , República da Coreia
9.
Int J Biol Macromol ; 261(Pt 1): 129747, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281536

RESUMO

Serpins are a protein superfamily of serine protease inhibitors. One of their functions is to participate in immune responses by inhibiting the activation of prophenoloxidase. To elucidate the immune role of serpin in Macrobrachium nipponense, a serpin gene (Mnserpin) was cloned from M. nipponense in this study. Mnserpin protein has an N-terminal signal peptide and a serpin domain that contains a hinge region, a signature sequence of serpin and a P1(arginine)-P1' scissile bond, and evolutionally closely related to the crustacean serpins. Mnserpin highly expressed in the hepatopancreas and gill. Mnserpin expression increased first and then decreased after Vibrio parahaemolyticus and Aeromonas hydrophila infection, and was knocked down by dsMnserpin injection with a maximum knockdown efficiency of 92 %. Mnserpin knockdown increased the expression of the clip domain serine protease and prophenoloxidase genes and phenoloxidase activity of M. nipponense as well as its mortality rate after V. parahaemolyticus and A. hydrophila infection. The recombinant Mnserpin (rMnserpin) showed bacteria-binding and bacteriostatic activity in vitro. Moreover, rMnserpin injection decreased the bacterial number and the mortality rate of M. nipponense post V. parahaemolyticus and A. hydrophila infection. These results suggested that Mnserpin plays a major role in the innate immune response of M. nipponense.


Assuntos
Palaemonidae , Serpinas , Animais , Serpinas/genética , Serpinas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Alinhamento de Sequência , Proteínas de Artrópodes/metabolismo , Filogenia
10.
J Eur Acad Dermatol Venereol ; 38(2): 413-418, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37684051

RESUMO

BACKGROUND: Hereditary palmoplantar keratodermas (hPPKs) comprise a heterogeneous group of skin disorders characterized by persistent palmoplantar hyperkeratosis. Loss-of-function variants in a serine peptidase inhibitor, SERPINA12, have recently been implicated in autosomal recessive diffuse hPPK. The disorder appears to share similarities with another hPPK associated with protease overactivity, namely Nagashima-type PPK (NPPK) caused by biallelic variants in SERPINB7. OBJECTIVES: The aim of this study was to enhance the understanding of the clinical and genetic characteristics of serine protease-related hPPKs caused by variants in SERPINA12 and SERPINB7. METHODS: Whole-exome sequencing (WES) was performed for hPPK patients. Haplotype analysis was completed for the patients with identified recessive SERPINA12 variants and their available family members. In addition, the current literature of SERPINA12- and SERPINB7-related hPPKs was summarized. RESULTS: The phenotype of SERPINA12-related hPPK was confirmed by reporting three new SERPINA12 patients, the first of European origin. A novel SERPINA12 c.1100G>A p.(Gly367Glu) missense variant was identified confirming that the variant spectrum of SERPINA12 include both truncating and missense variants. The previously reported SERPINA12 c.631C>T p.(Arg211*) was indicated enriched in the Finnish population due to a plausible founder effect. In addition, SERPINA12 hPPK patients were shown to share a similar phenotype to patients with recessive variants in SERPINB7. The shared phenotype included diffuse transgradient PPK since birth or early childhood and frequent palmoplantar hyperhidrosis, aquagenic whitening and additional hyperkeratotic lesions in non-palmoplantar areas. SERPINA12 and SERPINB7 hPPK patients cannot be distinguished without genetic analysis. CONCLUSIONS: Recessive variants in SERPINA12 and SERPINB7 leading to protease overactivity and hPPK produce a similar phenotype, indistinguishable without genetic analysis. SERPINA12 variants should be assessed also in non-Asian patients with diffuse transgradient PPK. Understanding the role of serine protease inhibitors will provide insights into the complex proteolytic network in epidermal homeostasis.


Assuntos
Hiperidrose , Ceratodermia Palmar e Plantar , Serpinas , Humanos , Pré-Escolar , Mutação , Ceratodermia Palmar e Plantar/genética , Ceratodermia Palmar e Plantar/patologia , Mutação de Sentido Incorreto , Peptídeo Hidrolases/genética , Serpinas/genética
11.
J Biochem Mol Toxicol ; 38(1): e23541, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712121

RESUMO

Serpin family H member 1 (SERPINH1) is responsible for encoding the protein known as heat shock protein 47, which functions as a molecular chaperone specific to collagen (COL). This protein has been identified as a potential therapeutic target for COL-related disorders. In this study, we aimed to investigate the role of SERPINH1 in the tumorigenicity of gliomas. To achieve this, we utilized various bioinformatics tools to analyze gene expression, overall survival, protein-protein interactions, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and Gene Set Enrichment Analysis (GSEA). Based on The Cancer Genome Atlas database revealed that SERPINH1 and four COL family members (COL1A1, COL3A1, COL4A1, and COL4A2) expression are significantly upregulated in glioma tissues compared with normal nontumor tissues. GO, KEGG, and GSEA analyses exhibited that SERPINH1 is implicated in the establishment and degradation of COL-containing extracellular matrix (ECM), focal adhesion, and ECM-receptor interaction in glioma. SERPINH1 is an independent prognostic factor, exhibiting a positive association with the augmentation of neutrophils and macrophages, as well as the manifestation of immune checkpoint molecules within glioma. Experimental assessments conducted both in vitro and in vivo demonstrated that the suppression of SERPINH1 impeded the migratory, invasive, and proliferative capacities of glioma cells, while concurrently fostering cellular apoptosis. Consequently, SERPINH1 emerges as an oncogenic gene and an independent prognostic marker for glioma, potentially facilitating the advancement of immunotherapeutic interventions for the treatment of glioma.


Assuntos
Glioma , Serpinas , Humanos , Biomarcadores , Matriz Extracelular , Redes Reguladoras de Genes , Glioma/genética , Prognóstico , Serpinas/genética
12.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061001

RESUMO

Parasitoids introduce various virulence factors when parasitism occurs, and some taxa generate teratocytes to manipulate the host immune system and metabolic homeostasis for the survival and development of their progeny. Host-parasitoid interactions are extremely diverse and complex, yet the evolutionary dynamics are still poorly understood. A category of serpin genes, named CvT-serpins, was discovered to be specifically expressed and secreted by the teratocytes of Cotesia vestalis, an endoparasitoid of the diamondback moth Plutella xylostella. Genomic and phylogenetic analysis indicated that the C. vestalis serpin genes are duplicated and most of them are clustered into 1 monophyletic clade. Intense positive selection was detected at the residues around the P1-P1' cleavage sites of the Cv-serpin reactive center loop domain. Functional analyses revealed that, in addition to the conserved function of melanization inhibition (CvT-serpins 1, 16, 18, and 21), CvT-serpins exhibited novel functions, i.e. bacteriostasis (CvT-serpins 3 and 5) and nutrient metabolism regulation (CvT-serpins 8 and 10). When the host-parasitoid system is challenged with foreign bacteria, CvT-serpins act as an immune regulator to reprogram the host immune system through sustained inhibition of host melanization while simultaneously functioning as immune effectors to compensate for this suppression. In addition, we provided evidence that CvT-serpin8 and 10 participate in the regulation of host trehalose and lipid levels by affecting genes involved in these metabolic pathways. These findings illustrate an exquisite tactic by which parasitoids win out in the parasite-host evolutionary arms race by manipulating host immune and nutrition homeostasis via adaptive gene evolution and neofunctionalization.


Assuntos
Mariposas , Parasitos , Serpinas , Vespas , Animais , Serpinas/genética , Filogenia , Mariposas/genética , Homeostase , Larva/metabolismo , Vespas/genética
13.
Sci Rep ; 13(1): 21424, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052851

RESUMO

We investigated the whole blood GLUT1 mRNA expression and serum pigment epithelium-derived factor (PEDF), interleukin-6 (IL-6), fetuin-A, and pentraxin-3 (PTX3) levels in psoriatic patients and tested their correlations with the severity of psoriasis using the psoriasis area and severity index (PASI) score. Also, we tested the GLUT1 mRNA expression after an in vitro treatment of human skin fibroblast (HSF) cell lines with PEDF. The case-control part of the study recruited 74 participants (44 psoriatic patients and 30 healthy volunteers). Whole blood GLUT1 mRNA fold changes were estimated by RT-PCR, and serum PEDF, IL-6, fetuin-A, and PTX3 levels were measured by ELISA kits. In the experimental part, the HSF cell lines were treated with different concentrations of PEDF for different times to test its effect on the GLUT1 mRNA expression. The whole blood GLUT 1 expression significantly increased in psoriatic patients and correlated positively with serum IL-6, fetuin-A, PTX3 levels and with the severity of psoriasis while negatively with serum PEDF levels. The PEDF-treated HSF cell lines showed a time- and dose-dependent decline in the GLUT 1 mRNA expression. The whole blood GLUT 1 mRNA is a non-invasive biomarker that is associated with the severity of psoriasis. PEDF represses GLUT 1 expression and may be a potential therapeutic agent in psoriasis.Trial registration: ClinicalTrials.gov Identifier: NCT04242082.


Assuntos
Psoríase , Serpinas , Humanos , alfa-2-Glicoproteína-HS , Estudos de Casos e Controles , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Transportador de Glucose Tipo 1/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Psoríase/tratamento farmacológico , Psoríase/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serpinas/genética , Serpinas/metabolismo
14.
BMC Med Genomics ; 16(1): 327, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087342

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a prevalent malignancy worldwide, with increasing incidence and mortality rates. Although treatment options have improved, CRC remains a leading cause of death due to metastasis. Early intervention can significantly improve patient outcomes, making it crucial to understand the molecular mechanisms underlying CRC metastasis. In this study, we performed bioinformatics analysis to identify potential genes associated with CRC metastasis. METHODS: We downloaded and integrated gene expression datasets (GSE89393, GSE100243, and GSE144259) from GEO database. Differential expression analysis was conducted, followed by Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The hub gene SERPINA3 was selected for further in vitro functional studies. Additionally, the role of miR-137-3p/miR-296-5p/ Serpin family A member 3 (SERPINA3) in CRC cell function was investigated using in vitro assays. RESULTS: Analysis of the gene expression datasets revealed differentially expressed genes (DEGs) associated with CRC metastasis. GO analysis showed enrichment in biological processes such as blood coagulation regulation and wound healing. Cellular component analysis highlighted extracellular matrix components and secretory granules. Molecular function analysis identified activities such as serine-type endopeptidase inhibition and lipoprotein receptor binding. KEGG analysis revealed involvement in pathways related to complement and coagulation cascades, cholesterol metabolism, and immune responses. The common DEGs among the datasets were further investigated. We identified SERPINA3 as a hub gene associated with CRC metastasis. SERPINA3 exerted enhanced effects on migration, proliferation and epithelial-mesenchymal transition (EMT) and inhibitory effects on caspase-3/-9 activities in HT29 and SW620 cells. MiR-137-3p overexpression increased activities of caspase-3/-9, decreased migration and proliferation, and also repressed EMT in HT29 cells, which were obviously attenuated by SERPINA3 enforced overexpression. Consistently, SERPINA3 enforced overexpression also largely reversed miR-296-5p mimics-induced increased in activities of caspase-3/-9, decrease in migration, proliferation and EMT in HT29 cells. CONCLUSION: Through bioinformatics analysis, we identified potential genes associated with CRC metastasis. The functional studies focusing on SERPINA3/miR-137-3p/miR-296-5p further consolidated its role in regulating CRC progression. Our findings provide insights into novel mechanisms underlying CRC metastasis and might contribute to the development of effective treatment strategies. However, the role of SERPINA3/miR-137-3p/miR-296-5p signaling in CRC still requires further investigation.


Assuntos
Neoplasias Colorretais , MicroRNAs , Serpinas , Humanos , Transcriptoma , Caspase 3/genética , Caspase 3/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Serpinas/genética , Serpinas/metabolismo
15.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003538

RESUMO

Serine protease inhibitors (serpins) appear to be ubiquitous in almost all living organisms, with a conserved structure and varying functions. Serpins can modulate immune responses by negatively regulating serine protease activities strictly and precisely. The codling moth, Cydia pomonella (L.), a major invasive pest in China, can cause serious economic losses. However, knowledge of serpin genes in this insect remain largely unknown. In this study, we performed a systematic analysis of the serpin genes in C. pomonella, obtaining 26 serpins from the C. pomonella genome. Subsequently, their sequence features, evolutionary relationship, and expression pattern were characterized. Comparative analysis revealed the evolution of a number of serpin genes in Lepidoptera. Importantly, the evolutionary relationship and putative roles of serpin genes in C. pomonella were revealed. Additionally, selective pressure analysis found amino acid sites with strong evidence of positive selection. Interestingly, the serpin1 gene possessed at least six splicing isoforms with distinct reactive-center loops, and these isoforms were experimentally validated. Furthermore, we observed a subclade expansion of serpins, and these genes showed high expression in multiple tissues, suggesting their important roles in C. pomonella. Overall, this study will enrich our knowledge of the immunity of C. pomonella and help to elucidate the role of serpins in the immune response.


Assuntos
Mariposas , Serpinas , Animais , Inibidores de Serino Proteinase/genética , Inibidores de Serino Proteinase/farmacologia , Serpinas/genética , Serpinas/química , Mariposas/genética , Insetos , Isoformas de Proteínas
16.
Anticancer Res ; 43(12): 5331-5340, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030170

RESUMO

BACKGROUND/AIM: PDIA6 is a disulphide isomerase of the PDI family, known to mediate disulphide bond formation in the endoplasmic reticulum. However, PDI-related proteins also function in other parts of the cell and PDIA6 has been shown to be involved in many types of cancers. We previously identified PDIA6 as a putative Maspin interactor. Maspin has itself been implicated in prostate cancer progression. Our aim was to further explore the roles of Maspin in prostate cancer and establish whether PDIA6 is also involved in prostate cancer. MATERIALS AND METHODS: RNA levels of PDIA6 and Maspin in prostate cell lines were measured using RT-PCR. Bioinformatics analysis of the TCGA database was used to find RNA levels of PDIA6 and Maspin in prostate cancer. siRNAs were used to knock-down PDIA6, and proliferation and migration assays were conducted on those cells. RESULTS: PDIA6 and Maspin RNA were shown to be expressed at varying levels in prostate cell lines. RNAseq data showed that PDIA6 expression was significantly increased in prostate adenocarcinoma samples, while Maspin RNA expression was decreased. When PDIA6 expression was knocked-down using siRNA in prostate cell lines, proliferation was decreased substantially in the two prostate cancer cell lines (DU145 and PC3) and also decreased in the normal prostate cell line (PNT1a), though less strongly. CONCLUSION: PDIA6 expression is higher in prostate cancer cells compared to normal prostate cells. Decreasing PDIA6 expression decreases proliferation. Thus, PDIA6 is a promising target for prostate cancer therapeutics.


Assuntos
Neoplasias da Próstata , Serpinas , Masculino , Humanos , Serpinas/genética , Serpinas/metabolismo , Neoplasias da Próstata/patologia , Isomerases de Dissulfetos de Proteínas/genética , RNA , Linhagem Celular Tumoral , Genes Supressores de Tumor
17.
Free Radic Biol Med ; 209(Pt 1): 96-107, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37838303

RESUMO

High dose intravenous vitamin C (IVC) has been proposed as a pro-oxidant anticancer agent. However, there is a lack of biomarkers that are specific for this treatment. Here, we explored profiles of gene expression responding to IVC treatment in non-small cell lung cancer (NSCLC) cells as an effort for potential biomarker discovery. Genome-wide RNA-seq was performed in human NSCLC cell lines treated with pharmacological concentrations of vitamin C(VitC) for differential expression of genes. The identified genes were analyzed for correlations with patient prognosis using data from the Kaplan-Meier Plotter and the Human Protein Atlas databases. Further, tumor samples from a retrospective study of 153 NSCLC patients were analyzed with immunohistochemistry for expression of targeted genes, and patient prognosis was correlated to these genes. Two genes, namely SERPINE1 and SERPINB7 were found to be downregulated in NSCLC cells following VitC treatment. Combined patient data from the cohort analysis and online databases revealed that these 2 genes presented an unfavorable prognostic prediction of overall survival (OS) in NSCLC patients receiving standard of care. However, high expression level of these 2 genes were associated with prolonged OS in NSCLC patients receiving IVC in addition to standard of care. These data revealed that SERPINE1 and SERPINB7 have the potential to serve as predictive factors indicating favorable responses to IVC treatment in patients with NSCLC. Further validations are warranted.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Serpinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Ácido Ascórbico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Antineoplásicos/uso terapêutico , Serpinas/genética , Inibidor 1 de Ativador de Plasminogênio/genética
18.
Eur J Med Genet ; 66(11): 104867, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37839784

RESUMO

Osteogenesis imperfecta (OI) type VI is an extremely rare form of OI caused by biallelic variants in the SERPINF1 gene, which codes for the pigment-epithelium derived factor (PEDF). We report on four patients (three adults and one adolescent) with a severe deforming form of OI. All patients presented no abnormalities at birth, frequent long bone and vertebrae fractures (mainly during childhood), marked short stature, severe bone deformities, chronic mild to moderate pain, and severe limitation of mobility, with three being completely wheelchair bound. Blue sclera and dentinogenesis imperfecta were absent, although some patients presented tooth, ophthalmological, and/or cardiac features. Radiographic findings included, among others, thin diaphysis and popcorn calcifications, both of which are non-specific to this type of OI. The novel homozygous variants c.816_819del (p.Met272Ilefs*8) and c.283+2T > G in SERPINF1 were identified in three and one patient, respectively. The three patients carrying the frameshift variant were born in nearby regions suggesting a founder effect. Describing the long-term outcomes of four patients with OI type VI, this cohort adds relevant data on the clinical features and prognosis of this type of OI.


Assuntos
Osteogênese Imperfeita , Serpinas , Adolescente , Adulto , Humanos , Recém-Nascido , Colágeno Tipo I/genética , Mutação da Fase de Leitura , Homozigoto , Osteogênese Imperfeita/genética , Serpinas/genética
19.
J Virol ; 97(10): e0104523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37811994

RESUMO

IMPORTANCE: Senecavirus A (SVA) is an emerging picornavirus associated with vesicular disease, which wide spreads around the world. It has evolved multiple strategies to evade host immune surveillance. The mechanism and pathogenesis of the virus infection remain unclear. In this study, we show that SERPINB1, a member of the SERPINB family, promotes SVA replication, and regulates both innate immunity and the autophagy pathway. SERPINB1 catalyzes K48-linked polyubiquitination of IκB kinase epsilon (IKBKE) and degrades IKBKE through the proteasome pathway. Inhibition of IKBKE expression by SERPINB1 induces autophagy to decrease type I interferon signaling, and ultimately promotes SVA proliferation. These results provide importantly the theoretical basis of SVA replication and pathogenesis. SERPINB1 could be a potential therapeutic target for the control of viral infection.


Assuntos
Quinase I-kappa B , Picornaviridae , Serpinas , Replicação Viral , Autofagia , Quinase I-kappa B/genética , Imunidade Inata , Picornaviridae/fisiologia , Transdução de Sinais , Serpinas/genética , Interferon Tipo I
20.
Cell Physiol Biochem ; 57(5): 331-344, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37724045

RESUMO

BACKGROUND/AIMS: Recombinant adeno-associated viruses (rAAV) are an important tool for lung targeted gene therapy. Substitution of tyrosine with phenylalanine residues (Y-F) in the capsid have been shown to protect the AAV vector from ubiquitin/proteasome degradation, increasing transduction efficiency. We tested the mutant Y733F-AAV8 vector for mucus diffusion, as well as the safety and efficacy of pigment epithelium-derived factor (PEDF) gene transfer to the lung. METHODS: For this purpose, Y733F-AAV8-PEDF (1010 viral genome) was administered intratracheally to C57BL/6 mice. Lung mechanics, morphometry, and inflammation were evaluated 7, 14, 21, and 28 days after injection. RESULTS: The tyrosine-mutant AAV8 vector was efficient at penetrating mucus in ex vivo assays and at transferring the gene to lung cells after in vivo instillation. Increased levels of transgene mRNA were observed 28 days after vector administration. Overexpression of PEDF did not affect in vivo lung parameters. CONCLUSION: These findings provide a basis for further development of Y733F-AAV8-based gene therapies for safe and effective delivery of PEDF, which has anti-angiogenic, anti-inflammatory and anti-fibrotic activities and might be a promising therapy for lung inflammatory disorders.


Assuntos
Proteínas do Olho , Técnicas de Transferência de Genes , Serpinas , Animais , Camundongos , Proteínas do Olho/genética , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/genética , Serpinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...